本科专业代码:070101修业年限:四年授予学位:理学学士
专业简介
·是什么
数学与应用数学以数学应用的理论研究为主,包含算术、代数、几何等多个方面,主要运用数学知识分析解决生活中的一些问题,例如:股票涨跌背后的数据分析、预测某一事件发生的概率,并且结合计算机,使用MATLAB等软件处理一些人脑无法解决的复杂运算,例如圆周率等。 关键词:算术 几何 理论 推导
·学什么
《C/C++程序设计》、《高等代数与几何》、《复变函数论》、《初等数论》、《数学分析实践》、《初等代数》、《几何分析》、《常微分方程和偏微分方程》 部分高校按以下专业方向培养:基础、财经数学、经济数学、数理金融、金融与统计、金融与保险精算、金融数学与金融工程、物流系统模型与仿真、数据科学与大数据技术。
·干什么
教育类企业:数学教师、数学教研、教学产品研发; 金融类企业:精算师、证券分析、金融研究。
详解
培养目标:本专业培养掌握数学科学的基本理论与基本方法、具有运用数学知识和使用计算 机解决实际问题的能力、接受科学研究的初步训练,能在科技、教育、经济和金融等部门从事研究 和教学工作,在生产、经营及管理部门从事实际应用、开发研究和管理工作,或继续攻读研究生学 位的创新型人才。
培养要求:本专业学生主要学习数学和应用数学的基本理论、基本方法并接受数学建模、计 算机和数学软件方面的基本训练,在数学理论和应用两方面都受到良好的教育,具有较高的科学 素养和较强的创新意识,具备科学研究、教学、解决实际问题及软件开发等方面的基本能力和较 强的更新知识的能力。
毕业生应获得以下几方面的知识和能力:
1.具有比较扎实的数学基础,接受严格的科学思维训练,初步掌握数学科学的思想方法;
2.具有运用数学知识建立数学模型以解决实际问题的初步能力和进行数学教学的能力;
3.了解数学科学发展的历史概况以及当代数学的某些新发展和应用前景;
4.能熟练使用计算机(包括常用语言、工具软件及数学软件),具有编写简单程序的能力;
5.有较强的语言表达能力,掌握资料查询、文献检索以及运用现代信息技术获取相关信息 的基本方法,具有一定的科学研究能力。
6.师范类毕业生还应具有良好的教师职业素养,了解教育法规,掌握并能初步运用教育学、 心理学以及数学教育学的基本理论,具有一定的组织管理能力。
主干学科:数学。
核心知识领域:几何、分析、代数、微分方程、概率统计、数学建模、数值计算。
核心课程示例:
示例一:数学分析I-Ⅲ(288学时)、高等代数I-Ⅱ(192学时)、解析几何(80学时)、初等 数论(32学时)、近世代数基础(32学时)、常微分方程(64学时)、拓扑学(48学时)、理论力学 (48学时)、大学物理(64学时)、实变函数(64学时)、复变函数论(64学时)、数理统计(64学 时)、泛函分析(64学时)、偏微分方程(64学时)、科学计算(64学时)、随机过程(64学时)。
示例二:数学分析I-Ⅲ(378学时,含习题课)、高等代数I-Ⅱ(198学时)、解析几何(72学 时)、常微分方程(72学时)、复变函数I(72学时)、概率论与数理统计I-Ⅱ(144学时)、微分几 何(72学时)、抽象代数(72学时)、实变函数I(72学时)、泛函分析(双语)(72学时)、数学模型 与数学软件(72学时)、数值分析(72学时)、普通物理学I-Ⅱ(180学时,含实验)、计算机基础 (72学时)、C语言程序设计(108学时,含实验)。
示例三:数学分析I-Ⅲ(324学时)、高等代数I-Ⅱ(198学时)解析几何(72学时)、C语 言(90学时)、普通物理(108学时)、概率与统计(90学时)、数学软件(54学时)、数学建模(72学 时)、近世代数(54学时)、常微分方程(54学时)点集拓扑(72学时)、实变函数(72学时)、中学 数学教材教法(54学时)、微分几何(54学时)、复变函数(54学时)、初等数论(36学时)、泛函分 析(54学时)。
主要实践性教学环节:学术与科技活动、课程设计及实验、毕业实习及社会调查(实践)、毕 业论文(设计)等。
修业年限:四年。
授予学位:理学学士。
选考学科建议:
3+3省份:物理/物理+化学
3+1+2省份:首选物理,再选化学
考研方向
学科教学(数学)、数学、应用数学、基础数学
开设课程
分析学、代数学、几何学、概率论、物理学、数学模型、数学实验、计算机基础、数值方法、数学史等,以及根据应用方向选择的基本课程等。
社会名人
丘成桐、陈省身、陈景润等。
高考专业解读:数学与应用数学
2021-05-31 17:38:02
高考查分网8766.net 第一时间发布高考成绩查询信息